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It is well known that there is an enormous disparity between the tensile elastic modulus E of a rubber and 
its bulk modulus K. For a typical rubber, E is of order 105 N m-2 and is primarily due to entropic effects. 
By contrast, K is of order 109 N m-2. This paper suggests that K arises from van der Waals interactions 
between groups in one chain and groups in neighbouring chains. Using a Lennard-Jones type of potential, 
U = - c / r r +  D/r 12, and assuming pairwise addition, the free surface energy ~ of rubber may be calculated 
and compared with typical experimental values (~ = 35 mJ m-2). From this, a typical value is obtained for 
C of order 60 x 10-79j m s (corresponding to a Hamaker constant ~9.3 x 10-20 j). This value may be used 
to calculate the bulk modulus, assuming a regular arrangement of interacting groups. The result agrees 
with the experimental value of K to better than an order of magnitude. 
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I N T R O D U C T I O N  

The elastic properties of solids reflect their resistance to 
tension (Young's modulus E), to compression (bulk 
modulus K) and to shear (shear modulus n): they are due 
to the atomic or molecular forces between their con- 
stituent parts. If these forces are all of one kind---e.g. 
covalent, ionic, metallic, or van der Waals-- the elastic 
properties are more or less isotropic, and E, K and n are 
all of the same order of magnitude and readily inter- 
related. With layer-like materials such as graphite or 
molybdenum disulfide, the forces between the layers 
are weak while the forces within the layers are strong. 
The elastic properties are markedly anisotropic and the 
relations between E, K and n are complex and orientation- 
dependent. Nevertheless, it is a valid generalization that 
the elastic properties of solids are determined by the 
strength of the relevant interatomic forces. 

This is not the case with rubber: neither E nor n is due 
to interatomic forces, but K is. This paper discusses, in 
particular, the immense difference between E and K in 
terms of very simple modelling. 

THE TENSILE ( Y Q U ~ ' S )  M O D U L U S  E OF 
RUBBER 

A carbon-based rubber consists of an enormous number 
of monomers linked together to form a chain. If there is 
free rotation about the carbon-carbon bonds, the chain 
adopts as many random configurations as possible in 
order to increase its entropy. If an attempt is made to 
stretch the chain, the configurations are restricted. The 
entropy is reduced and the polymer resists the stretching 
action. This is the mechanism for the elastic tensile 
properties of the chain. In the rubber, the polymer chains 
are crosslinked at various points to form a three- 
dimensional network. Each segment or strand between 
two link points attempts to contract for the reasons 
already described. If there are N monomers in the strand 

and the molecular volume of a monomer is v, the effective 
Young's modulus E of the whole is given 1'2 by: 

kaT 
E = ~  (1) 

Nv 

where kB is the Boltzmann constant and ~ is a numerical 
factor (still the subject of some debate) close to unity. 

Unlike almost all other solids, the modulus increases 
with increasing temperature, a natural consequence of 
the fact that the tensile elasticity is associated with 
entropy, not with interatomic forces. A similar considera- 
tion applies to the shear modulus n for the following 
reason. The high bulk modulus (see below) implies that 
rubber is almost incompressible. If a cube of rubber is 
held on its base and the opposite face subjected to a shear 
stress, the distance between the faces must remain 
constant to conserve the volume. Thus every (virtual) 
filament in the rubber from the base to the opposite face 
is subjected to tension. It is then easy to show that the 
shear modulus n is simply equal to E/3. 

For a typical rubber of polybutadiene, in which the 
segments or strands contain, say, 250 monomers, the 
value of E is of order 105Nm -2. However, the bulk 
modulus K is about 2 x 109 N m -  2. If we link E and K 
by the standard elasticity relation: 

e = 3 K 0  - 2v) (2) 

where v is Poisson's ratio, we find that v = 0.499992. But 
Poisson's ratio for rubber is rather meaningless, since E 
and K arise from two completely different mechanisms, 
leading to vastly disparate values. The same comment 
applies to the shear modulus n, which is linked to E by 
the standard relation: 

E 
n = - -  (3) 

2(1 + v) 

As we have seen, for an 'incompressible' material n = E/3: 
the introduction of v is irrelevant. 
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THE BULK MODULUS K OF RUBBER 

The high value of K must be due to relatively strong 
forces within the rubber, and we now consider various 
possibilities. First, there are covalent bonds between the 
carbon atoms in the polymer chain: they are extremely 
strong. The most extreme example of this is diamond, 
where every carbon is linked to its neighbour by a 
covalent bond. For diamond we find: 

E = 1 0 x  1011Nm -2 

K ~ 5 x  10: lNm -2 

vg0.16 

It seems unlikely that these are the cause of the rubber 
bulk modulus, though it is possible to invoke some 
fraction of these forces in the polymer backbone as 
operating in compression. We shall assume that this is 
negligible. A second possibility is that compression 
produces some biased rotation of polymer groups about 
the C-C bond, say a cis to a trans configuration to 
accommodate the changes in volume involved. We shall 
assume that, in hydrostatic compression, this too, on 
average, is not an important factor. Finally, we ignore any 
possible Coulombic forces. 

This leaves as a plausible alternative that the bulk 
modulus is due mainly to van der Waals forces between 
CH 2 groups (or their equivalent) in one rubber molecule 
with those of its neighbours. At room temperature the 
strands in the rubber between each crosslink have almost 
complete configurational freedom (that is why the 
material behaves in a rubber-like manner). It is only the 
crosslinks that give it solid-like properties: the strands 
themselves are virtually liquid. We may therefore expect 
the van der Waals forces to produce an internal pressure 
Pi in the rubber analogous to the a/V 2 term in the van 
der Waals equation of state for an imperfect gas. 
Analytically Pi = - a  U/dV, where U is the internal energy 
of the material and V its volume. There is, of course, a 
positive pressure in the rubber due to its kinetic (or 
thermal) energy, and it is the balance between these 
pressures that leaves the surface in equilibrium with the 
surroundings. The internal pressure Pi is a measure of 
the compressibility of the rubber, but its calculation is 
very difficult. We shall simplify the model and assume 
that the constituent parts are in atomic contact, their 
centre-to-centre separation being equal to their effective 
diameter. This is equivalent to assuming that the thermal 
energy may be ignored, so that this is, in effect, a static 
molecular model 3. Then the hydrostatic stress resisting 
compression is the bulk modulus K of the material, where 
K= Vd2U/dV 2 (see ref. 2, ch. 7). This clearly gives an 
overestimate of K, but it should be of the right order of 
magnitude: later we shall consider how to allow for some 
increase in the separation between the groups. At this 
stage we note that, for a typical butadiene rubber, the 
bulk modulus at room temperature is 2.4 GPa; below its 
T~ it is greater by a factor of less than 3. 

We start by recognizing that, though, at room 
temperature, the strands are continuously changing their 
configuration, there must be a statistically mean separa- 
tion between the individual CH2 groups corresponding 
to the bulk density of rubber. In this sense the simplest 
analogue to rubber at room temperature is linear 
polyethylene in its rubbery range; while below its T s 
polyethylene resembles rubber in its glassy state. 
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If we compare the arrangement of groups in poly- 
ethylene (PE) with those in typical rubbers such as 
polybutadiene or polyisoprene, we see that some groups 
are CH or CCH3 instead of CH2. We make the 
simplifying assumption that they are all equivalent to a 
CH2 group. In molten PE we assume that each CH2 
group occupies a volume v of about 23 x 10-3°m 3 
corresponding to a bulk density of molten PE of about 
1000 kgm -3. For polybutadiene the equivalent volume 
is 25x10-a°m 3. Assuming that the groups are in 
molecular contact, the forces between the CH2 groups 
are, as mentioned above, a balance between van der 
Waals attractive forces and a repulsive force arising from 
the overlap of orbitals (see below). Unfortunately, it is 
not easy to calculate the van der Waals interaction 
between CH2 groups ab initio, particularly as the carbon 
atom itself is also linked by covalent bonds to a carbon 
atom on each side of it. The simplest assumption is that 
each HCH unit behaves like a single spherical 'atom' with 
orbital electrons. Fluctuations in electron configuration 
give rise to an instantaneous dipole, which interacts with 
its neighbours to give a pairwise potential of the 
Lennard-Jones type: 

C D 
U = - ~  + r 1-- ~ (4) 

Apart from the dipole interaction, there are quadrupole 
and more involved interactions giving additional attrac- 
tion terms of the type - C ' / r  8, - C " / r  1° as well as more 
elaborate forms of the repulsion potentiaP. There is also 
a modelling problem. A sphere of volume 23 x 10- ao m 3 
has a diameter of ~r of over 3.5 x 10-1°m. This is con- 
siderably greater than the length (about 1.53 x 10-10 m) 
of the covalent bond between neighbouring CH2 groups 
in the molecular chain. We accept this as part of the 
inadequacy of the simple treatment given here and apply 
the model using equation (4). The general behaviour is 
thus assumed to resemble that of an inert gas. Sanchez 5 
has discussed the application of van der Waals forces to 
correlate the bulk density PB, compressibility Q and 
surface tension ~, of a wide range of liquids, including 
saturated hydrocarbons, aromatic hydrocarbons, alcohols 
as well as the inert gases and water. He finds that for 
each family of liquids a parameter 7(Q/pB) 1/2 is more or 
less constant. Although this parameter is not a dimen- 
sionless quantity, his results suggest that van der Waals 
interactions are applicable to the intermolecular forces 
of these materials. Later in this paper some of his data 
will be dealt with in a different way. 
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THE MAGNITUDE OF THE COEFFICIENT C 

We shall need the value of C in order to compute the 
bulk modulus. To do this we first consider the van der 
Waals energy per unit area between two (semi-infinite) 
fiat parallel surfaces at a distance H apart. For a uniform 
distribution of dipoles of number density Pn per unit 
volume, we may calculate the potential due to the 
attractive part of the van der Waals force 2'6'7. Assuming 
pairwise addition, i.e. ignoring many-body effects, we 
obtain (see ref. 2, equation (12.6)): 

C~p~ Cn 
u =  - -  - ( 5 )  

12H 2 12H2v 2 

If the surfaces are brought into atomic contact (H = Ho) 
and then separated to infinity, the work done will be: 

C~ 
(6) 

12Ho2v 2 

and this corresponds to the work done in creating two 
unit areas of rubber, i.e. it is equal to 27 where y is the 
free surface energy of the solid. Hence: 

Crc 
y = 24Ho2v 2 (7) 

We have neglected the repulsive term. If we assume that 
it can be expressed as a power relation D/r 12, this reduces 
the value of ~, by about 25% (see ref. 2, equation (6.12)). 
This overestimates the effect of the repulsive forces, but 
if we include it we obtain: 

Cn 
= 32H2v2 (8) 

If we assume that this analysis applies to rubber and 
that v = 25 x 10- 30 m 3, we can deduce the value of C from 
the observed value of V. This has been determined directly 
by measuring the adhesion between two rubber speci- 
mens 8. The value obtained is 35mJm -2, and a similar 
value has been deduced from measurements of the critical 
surface tension for wetting. We also need a value for H o. 
It clearly cannot be greater than the effective diameter tr 
of the CH 2 'sphere' (tr = 3.5 x 10-10 m): it cannot be less 
than, say, 10-1°m. The problem arises because in the 
derivation of equation (5) the dipoles are not treated as 
individual entities: they are replaced by a smeared-out 
uniform density of matter 6'7, giving an average number 
density pn. In this way the interaction energy is obtained 
by integration rather than by adding every pairwise 
energy term. For bulk properties this is a reasonable 
assumption. But for the atoms at the two nascent surfaces 
as they are separated, the 'graininess' of matter reappears 
and the local interaction is much stronger than that 
deduced from the smeared-out distribution from which 
equation (5) is deduced. Another way of describing this 
is to recognize that the potential due to quadrupoles, 
octupoles, etc., fails off more rapidly with distance than 
the dipoles, so that their contribution is important only 
at short separations. There is also the problem of surface 
relaxation. Tabor 6 suggested that to allow for these 
factors it would be more realistic to give H o a value of 
a/2, while Israelachvili 7 suggested a value tr/2.5. In fact 
he showed that for a variety of hydrocarbons a 'good' 
value for H0 is 1.65 x 10-1°m. It must be realized that 
this is an empirical value, though it has a semi-theoretical 
basis. 
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Inserting this value in equation (8) we obtain: 

C = 6 0 x  10-79 J m  6 (9) 

for rubber. For polyethylene, assuming that in the molten 
state ? = 30mJ m-2, we deduce a value for C of about 
43 x 10-79jm 6. 

In colloid and surface chemistry, intermolecular and 
interpartiele forces are often quoted in terms of the 
Hamaker constant A n, where An=C~2p~. The usual 
range is (4 to 40)x 10-2°J .  The above value of C for 
rubber gives a value of An=9.3 x 10 -2°J ;  for poly- 
ethylene A n = 8.0 x 10-20 j. For bulk properties there is 
an alternative way of calculating A n, due to Lifshitz. It 
side-steps the atomic or particulate structure of the solid 
and treats it as a continuous medium. It is then possible 
to derive A n in terms of macroscopic bulk properties 
such as the dielectric constant and refractive index. This 
approach automatically overcomes the 'many-body' 
problem of interacting dipoles. (For an informative 
discussion see IsraelachviliT.) Israelachvili has calculated 
the value of An for liquid hexadecane, which may be 
regarded as a typical assembly of CH 2 groups (ignoring 
the terminal hydrogens) such as one would find in molten 
polyethylene. He quotes a value of Al~=5.2x 10-2°J. 
Since the density of hexadecane at 23°C is 772 kgm-a ,  
this implies an average volume v per CH2 group of 
30 x 10- 30 m 3. Since C = Arl/r~2p 2 = -  AHO2/I~ 2, we have 
C = 47 x 10- 79 j m 6. This gives us confidence in using the 
value 43 x 10-79j m 6 derived from equation (8) and the 
value 60 x 10- 79 j m 3 for rubber. 

To calculate the bulk modulus we need to know how 
the internal energy U of an assembly of CH2 particles 
varies with separation, since K = V d 2 U/d V 2. This can be 
achieved most simply by assuming a regular arrangement 
of the particles. It is convenient to put the CH2 particles 
on a f.c.c, lattice, since this has been analysed for typical 
van der Waals solids such as Ar, Kr and Xe. In this 
connection we note that the experimentally determined 
bulk moduli for Ar, Kr and Xe are respectively 2.9, 3.4 
and 3.6 GPa (ref. 9), as compared with a value of 2.5 GPa 
for rubber. Similarly, theoretical calculations by Shuttle- 
worth 1 o of the surface energy of the crystalline inert gases 
give values lying between 18 and 63mJm -2, which 
straddle the value for rubber. These similarities are not 
fortuitous, as the followinz shows. 

If the lattice spacing is 2a (this implies a particle or 
atom diameter a = a x / ~  ), it may be shown, using the 
6-12 potential, that: 

1.8C 
K - (10) 

a 9 

In this s tructure the vo lume v per particle or  a t o m  is 2a 3, 
so that: 

14.4C 
K -  v3 (11) 

Using the values of v and C in Table 1 we see that for 
the inert gases the calculated values of K are somewhat 
smaller than the observed values but agree to within a 
factor of 2. (We may recognize that other sources give 
larger values for C, which could provide better agreement.) 
For molten polyethylene the calculated value is more 
than five times larger than the experimental value: for 
rubber it is more than twice as big. However the 
derivations of equations (8), (10) and (11) assume a regular 
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T a b l e  1 Properties of inert gases, polyethylene and polybutadiene 

Molecular 
volume v 

Species (10-6m 3) (10-3°m 3) 

Refractive 
index 
(visible 2) 

Bulk modulus K (GPa) 

Surface Coefficient Solid Liquid 
energy C 
(mJm -2) (10-79jm 6) Calc. Exp. Exp. 

Ne 19 = 31 1.2 
Ar 24 a 40 1.8 
Kr 38 = 63 1.9 
Xe 49 a 81 2.0 

CH2 (polyethylene) 15 b 23 1.51 
CH2CHCHCH 2 (polybutadiene) 25 per 'CH2' 1.52 

18 c _ _ 1 . 1 a . i  0 . 6  / 

43 c 108 g 2.4 2.9 a'~ 0.9 s 

55 ~ 220 g 1.3 3.4 "'i 1.2 s 
63 c 520 g 1.4 3.6 °'~ 1.5 s 

30 d 43 h 5 2.0 ~ 1.0 y'~ 
35 't'e': 60 h 5.5 2.4 i'k 

rubber 

° Single crystal at 0 K 9 

v Amorphous, semicrystalline, per monomer 
c Single crystal at OK, theoretical t° 
Experimental, wetting 

e Experimental, adhesion a 
I Rubbery state 
g Ref. 4 
h This paper, derived from the surface energy 
i Experimental 
J Above triple point t 1 
k Crosslinked, rubbery state 

rigid f.c.c, structure, whereas the CH2 groups (or their 
equivalents in rubber) are in cont inuous  thermal mot ion  
and are somewhat  disordered. We should not  expect 
better agreement. A similar calculation may  be made of 
the latent heat of vaporizat ion from the liquid state of 
C28Hss using an Arrhenius plot of  the vapour  pressure 
at various temperatures. The observed value is 0.62 x 10- 20 j 
per CH2 compared with a value of  1.3 x 10 -20 J calculated 
from the value of C = 43 x 10-  79 j m 6 for the C H  2 group. 

Equat ion  (11) also indicates how the bulk modulus  of 
the inert gases would change on melting. A 10% 
expansion would lead to a 30% reduction of K. There 
would also be a reduction in the number  of nearest 
neighbours and probably  some entropic effects associated 
with local packing. We would thus expect melting to 
produce a reduction in K (taken as the reciprocal of  the 
compressibility) of  not  more  than 2. This is observed with 
the inert gases near their triple point  11. Similarly, the 
compressibility of  mol ten polyethylene in the rubbery 
state differs f rom that of  the solid semicrystalline polymer  
by a factor  of  about  2 (refs. 12, 13). 

We may  take the analysis one stage further. By 
combining equat ions (8) and (11) and taking Ho as a/2, 
i.e. ax/2, for a model  f.c.c, structure, we obtain: 

K 146H02 45 
- - -  ~ -  ( 1 2 )  

v v ~/3 

This relation is followed qualitatively by the inert gases 
using the data  of  Table 1, though  the constant  is nearer 
25 than 45. This may  be due to inconsistent basic data  
and to other  factors discussed above. We may conclude 
that  the CH2 groups (or their equivalent) interact by van 
der Waals  forces, and that  in rubber and molten 
polyethylene their interaction energy and bulk modulus  
resemble that  of  a 'small '  inert gas just above its melting 
point. 

T H E  S U R F A C E  T E N S I O N  A N D  B U L K  
M O D U L U S  O F  L I Q U I D  H Y D R O C A R B O N S  
Equat ion (12) suggests that  it would be interesting to 

Table 2 Surface tension 7 and bulk modulus K of liquid hydrocarbons 

Temp. pB ° K ~ K/~ 
Liquid (°C) (kgm -a) (GPa) (mJm -2) (10-1°m) Kvl/3/), 

n-Pentane 20 626 0.49 16 3.1 10.4 
n-Hexane 25 655 0.60 18 3.3 10.5 
n-Hexane 60 622 0.42 14.3 3.4 10.2 
Octane 25 698 0.96 23.6 4.1 12.7 
Dodecane 23 728 1.11 25.2 4.4 12.9 
Hexadecane 23 772 1.35 27.4 4.9 15.5 
Octadecane 60 755 1.06 25 4.2 12.9 
PE molten 135 1000 1.0 ~ 30 3.3 ~ 10 

= From the density the mean value of the volume v of the CH2 unit 
has been calculated ignoring the effect of the bulky CH3 end-groups. 
This becomes less important the longer the chain. The value of v 
ranges from 38 x 10-3°m 3 for pentane to 23 x 10-3°m 3 for molten 
polyethylene 

know if: 

Kvl/3 
- -  = constant  (13) 

is applicable to the organic liquids studied by Sanchez. 
We consider here only his data  for saturated liquid hydro-  
carbons. Table 2 gives the bulk density PB (kgm-3) ,  
the surface tension (mJ m - 2 )  and the reciprocal of  the 
compressibility, which is equivalent to the bulk modulus,  
K (GPa). The temperatures in some cases are very much  
higher than melting points, in other  cases rather close. 
In spite of  this unsatisfactory feature of  the data,  very 
clear conclusions emerge. The ratio K/7 is almost  
constant  and varies only by + 20% over the whole range. 
Physically this is because the surface energy represents 
the work  done in separating two unit areas against the 
bulk forces in the liquid. It has the dimensions of L-1 .  
This conclusion is not  basically altered if we consider the 
more  acceptable dimensionless ratio Kvl/3/7: it has a 
value of  11 _ 10% (if we omit the result for hexadecane) 
from pentane to liquid polyethylene. The theoretical value 
if the liquid consisted of  isolated interacting spheres in 
a regular f.c.c, structure is approximately 45. Considering 
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the crudity of the model, we cannot expect better 
numerical agreement. 

C O N C L U S I O N S  

The ideas discussed in this paper  indicate that van der 
Waals forces between CH2 groups (or their equivalents) 
can play an important  part  in explaining certain 
properties of polymers and rubber. For  example, in the 
flow of molten polyethylene, the resistance to flow is 
attributed, in part, to the occurrence of transient 
entanglements. These could simply be the van der Waals 
interactions between short rows of CH2 groups in one 
chain with similar groups in a neighbouring chain. Thus 
it may be possible to quantify the effect. 

Again, the very large value of the bulk modulus of 
rubber compared with its tensile modulus is shown to be 
due to the fact that the tensile modulus is an entropic 
property whereas the bulk modulus involves inter- 
molecular forces. These are van der Waals forces and, 
like the inert gases, are reasonably well represented by a 
6-12 potential. The basic qualitative difference between 
these moduli is shown most  markedly by the results of 
Wood and Martin 14, who studied the compressibility of 
latex and of a lightly peroxide-linked latex rubber. The 
compressibilities were almost identical. Further a rise in 
temperature from 0 to 40°C produced a decrease in K 
from about  2.6 to 2.1 GPa,  i.e. a drop of nearly 20%. 
Over the same temperature range the tensile modulus of 
rubber 'increases by approximately 15%. These results 
emphasize the general view expressed in this paper and 
hinted at by Treloar 1 that the bulk modulus of rubber 
is in no way related to the tensile elastic modulus. The 
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present paper, although relatively crude, attempts to 
bridge the 10 000-fold gap between E and K. 
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